
Workgroup: Network Working Group

Internet-Draft: draft-kunze-ark-39

Published: 9 May 2024

Intended Status: Informational

Expires: 10 November 2024

Authors: J. Kunze

Ronin Institute

E. Bermès

École nationale des Chartes

The ARK Identifier Scheme

Abstract

The ARK (Archival Resource Key) naming scheme is designed to

facilitate the high-quality and persistent identification of

information objects. The label "ark:" marks the start of a core ARK

identifier that can be made actionable by prepending the beginning

of a URL. Meant to be usable after today's networking technologies

become obsolete, that core should be recognizable in the future as a

globally unique ARK independent of the URL hostname, HTTP, etc. A

founding principle of ARKs is that persistence is purely a matter of

service and neither inherent in an object nor conferred on it by a

particular naming syntax. The best any identifier can do is lead

users to services that support robust reference. A full-functioning

ARK leads the user to the identified object and, with the "?info"

inflection appended, returns a metadata record and a commitment

statement that is both human- and machine-readable. Tools exist for

minting, binding, and resolving ARKs.

Responsibility for this Document

The ARK Alliance Technical Working Group [ARKAtech] is responsible

for the content of this Internet Draft. The group homepage lists

monthly meeting notes and agendas starting from March 2019.

Revisions of the spec are maintained on github at [ARKdrafts].

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://arks-

org.github.io/arkspec/draft-ark-spec.html. Status information for

this document may be found at https://datatracker.ietf.org/doc/

draft-kunze-ark/.

Source for this draft and an issue tracker can be found at https://

github.com/arks-org/arkspec.

¶

¶

¶

¶

¶

¶

https://arks-org.github.io/arkspec/draft-ark-spec.html
https://arks-org.github.io/arkspec/draft-ark-spec.html
https://datatracker.ietf.org/doc/draft-kunze-ark/
https://datatracker.ietf.org/doc/draft-kunze-ark/
https://github.com/arks-org/arkspec
https://github.com/arks-org/arkspec

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 November 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Reasons to Use ARKs

1.2. Three Requirements of ARKs

1.3. Organizing Support for ARKs: Our Stuff vs. Their Stuff

1.4. Definition of Identifier

2. ARK Anatomy

2.1. The Name Mapping Authority (NMA)

2.2. The ARK Label Part (ark:)

2.3. The Name Assigning Authority Number (NAAN)

2.4. The Name Part

2.4.1. Optional: Shoulders

2.5. The Qualifier Part

2.5.1. ARKs that Reveal Object Hierarchy

2.5.2. ARKs that Reveal Object Variants

3. ARK Processing

3.1. Character Repertoires

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

3.2. Normalization and Lexical Equivalence

3.3. Resolver Chains and Roles

3.4. Finding a Resolver Service

4. Naming Considerations

4.1. ARKS and Usability

4.2. Objects Should Wear Their Identifiers

4.3. Names are Political, not Technological

4.4. Choosing a Hostname or NMA

4.5. Assigners of ARKs

4.6. NAAN Namespace Management

4.7. Sub-Object Naming

5. Generic ARK Service Definition

5.1. Generic ARK Access Service (access, location)

5.1.1. Generic Policy Service (permanence, naming, etc.)

5.1.2. Generic Description Service

5.2. Overview of The HTTP URL Mapping Protocol (THUMP)

5.3. The Electronic Resource Citation (ERC)

5.4. Advice to Web Clients

5.5. Enhancements and Related Specifications

5.6. Security Considerations

6. Informative References

Appendix A. ARK Maintenance Agency: arks.org

Appendix B. Looking up NMAs Distributed via DNS

Authors' Addresses

1. Introduction

This document describes a scheme for the high-quality naming of

information resources. The scheme, called the Archival Resource Key

(ARK), is well suited to long-term access and identification of any

information resources that accommodate reasonably regular electronic

description. This includes digital documents, databases, software,

and websites, as well as physical objects (books, bones, statues,

etc.) and intangible objects (chemicals, diseases, vocabulary terms,

performances). Hereafter the term "object" refers to an information

resource. The term ARK itself refers both to the scheme and to any

single identifier that conforms to it. A reasonably concise and

accessible overview and rationale for the scheme is available at

[ARK].

Schemes for persistent identification of network-accessible objects

are not new. In the early 1990's, the design of the Uniform Resource

Name [RFC2141] responded to the observed failure rate of URLs by

articulating an indirect, non-hostname-based naming scheme and the

need for responsible name management. Meanwhile, promoters of the

Digital Object Identifier [DOI] succeeded in building a community of

providers around a mature software system [Handle] that supports

name management. The Persistent Uniform Resource Locator [PURL] was

another scheme that had the advantage of working with unmodified web

¶

browsers. ARKs represent an approach that attempts to build on the

strengths and to avoid the weaknesses of these schemes. For example,

like URNs, ARKs have an internal label ("ark:") to help them be

recognizable as globally unique identifiers in a post-HTTP Internet.

Unlike DOIs and Handles, ARKs can be created without centralized

fee- based infrastructures. ARK resolvers can take advantage of

advanced resolution features such as content negotiation (like DOIs)

and suffix passthrough [SPT] (similar to PURL partial redirects).

Like PURLs, ARKs openly embrace URLs as the best current choice for

actionability.

A founding principle of the ARK is that persistence is purely a

matter of service. Persistence is neither inherent in an object nor

conferred on it by a particular naming syntax. Nor is the technique

of name indirection -- upon which URNs, Handles, DOIs, and PURLs are

founded -- of central importance. Name indirection is an ancient and

well-understood practice; new mechanisms for it keep appearing and

distracting practitioner attention, with the Domain Name System

(DNS) [RFC1034] being a particularly dazzling and elegant example.

What is often forgotten is that maintenance of an indirection table

is an unavoidable cost to the organization providing persistence,

and that cost is equivalent across naming schemes. That indirection

has always been a native part of the web while being so lightly

utilized for the persistence of web-based objects indicates how

unsuited most organizations will probably be to the task of table

maintenance and to the much more fundamental challenge of keeping

the objects themselves viable.

Persistence is achieved through a provider's successful stewardship

of objects and their identifiers. The highest level of persistence

will be reinforced by a provider's robust contingency, redundancy,

and succession strategies. It is further safeguarded to the extent

that a provider's mission is shielded from funding and political

instabilities. These are by far the major challenges confronting

persistence providers, and no identifier scheme has any direct

impact on them. In fact, some schemes may actually be liabilities

for persistence because they create short- and long-term

dependencies for every object access on complex, special-purpose

infrastructures, parts of which are proprietary and all of which

increase the carry- forward burden for the preservation community.

It is for this reason that the ARK scheme relies only on educated

name assignment and light use of general-purpose infrastructures

that are maintained mostly by the Internet community at large (the

DNS, web servers, and web browsers).

As purely a matter of service, persistence is difficult, not known

to be commercially attractive, and likely to be undertaken by only a

small fraction of content providers that have preservation in their

mission. This vision runs counter to some early predictions that

¶

¶

¶

technology-backed persistent identifiers would somehow become

ubiquitous. On the plus side, persistent identifier solutions should

not need to be "internet scale".

1.1. Reasons to Use ARKs

If no persistent identifier scheme contributes directly to

persistence, why not just use URLs? A particular URL may be as

durable an identifier as it is possible to have, but nothing

distinguishes it from an ordinary URL to the recipient who is

wondering if it is suitable for long-term reference. An ARK embedded

in a URL provides some of the necessary conditions for credible

persistence, inviting access to not one, but to three things: to the

object, to its metadata, and to a nuanced statement of commitment

from the provider in question (the NMA, described below) regarding

the object. Existence of the extra service can be probed

automatically by appending "?info" to the ARK.

The form of the ARK also supports the natural separation of naming

authorities into the original name assigning authority and the

diverse multiple name mapping (or servicing) authorities that in

succession and in parallel will take over custodial responsibilities

from the original assigner (assuming the assigner ever held that

responsibility) for the large majority of a long-term object's

archival lifetime. The name mapping authority, indicated by the

hostname part of the URL that contains the ARK, serves to launch the

ARK into cyberspace. Should it ever fail (and there is no reason why

a well-chosen hostname for a 100-year-old cultural memory

institution shouldn't last as long as the DNS), that host name is

considered disposeable and replaceable. Again, the form of the ARK

helps because it defines exactly how to recover the core immutable

object identity, and simple algorithms (one based on the URN model)

or even by-hand Internet query can be used for for locating another

mapping authority.

There are tools to assist in generating ARKs and other identifiers,

such as [NOID] and "uuidgen", both of which rely for uniqueness on

human-maintained registries. This document also contains some

guidelines and considerations for managing namespaces and choosing

hostnames with persistence in mind.

1.2. Three Requirements of ARKs

The first requirement of an ARK is to give users a link from an

object to a promise of stewardship for it. That promise is a multi-

faceted covenant that binds the word of an identified service

provider to a specific set of responsibilities. It is critical for

the promise to come from a current provider and almost irrelevant,

over a long period of time, what the original assigner's intentions

¶

¶

¶

¶

were. No one can tell if successful stewardship will take place

because no one can predict the future. Reasonable conjecture,

however, may be based on past performance. There must be a way to

tie a promise of persistence to a provider's demonstrated or

perceived ability -- its reputation -- in that arena. Provider

reputations would then rise and fall as promises are observed

variously to be kept and broken. This is perhaps the best way we

have for gauging the strength of any persistence promise.

The second requirement of an ARK is to give users a link from an

object to a description of it. The problem with a naked identifier

is that without a description real identification is incomplete.

Identifiers common today are relatively opaque, though some contain

ad hoc clues reflecting assertions that were briefly true, such as

where in a filesystem hierarchy an object lived during a short stay.

Possession of both an identifier and an object is some improvement,

but positive identification may still be uncertain since the object

itself might not include a matching identifier or might not carry

evidence obvious enough to reveal its identity without significant

research. In either case, what is called for is a record bearing

witness to the identifier's association with the object, as

supported by a recorded set of object characteristics. This

descriptive record is partly an identification "receipt" with which

users and archivists can verify an object's identity after brief

inspection and a plausible match with recorded characteristics such

as title and size.

The final requirement of an ARK is to give users a link to the

object itself (or to a copy) if at all possible. Persistent

identification plays a vital supporting role but, strictly speaking,

it can be construed as no more than a record attesting to the

original assignment of a never-reassigned identifier. Object access

may not be feasible for various reasons, such as a transient service

outage, a catastrophic loss, a licensing agreement that keeps an

archive "dark" for a period of years, or when an object's own lack

of tangible existence confuses normal concepts of access (e.g., a

vocabulary term might be "accessed" through its definition). In such

cases the ARK's identification role assumes a much higher profile.

But attempts to simplify the persistence problem by decoupling

access from identification and concentrating exclusively on the

latter are of questionable utility. A perfect system for assigning

forever unique identifiers might be created, but if it did so

without reducing access failure rates, no one would be interested.

The central issue -- which may be crudely summed up as the "HTTP 404

Not Found" problem -- would not have been addressed.

The central duty of an ARK is a high-quality experience of access

and identification. This means supporting reliable access during the

period described in its stewardship promise and, failing that,

¶

¶

¶

supporting reliable access to a record describing the thing the ARK

is associated with.

ARK resolvers must support the "?info" inflection for requesting

metadata. Older versions of this specification distinguished between

two minimal inflections: '?' (brief metadata) and '??' (more

metadata). While these older inflections are still reserved, because

they have proven hard to recognize in some environments, supporting

them is optional.

1.3. Organizing Support for ARKs: Our Stuff vs. Their Stuff

An organization and the user community it serves can often be seen

to struggle with two different areas of persistent identification:

the Our Stuff problem and the Their Stuff problem. In the Our Stuff

problem, we in the organization want our own objects to acquire

persistent names. Since we possess or control these objects, our

organization tackles the Our Stuff problem directly. Whether or not

the objects are named by ARKs, our organization is the responsible

party, so it can plan for, maintain, and make commitments about the

objects.

In the Their Stuff problem, we in the organization want others'

objects to acquire persistent names. These are objects that we do

not own or control, but some of which are critically important to

us. But because they are beyond our influence as far as support is

concerned, creating and maintaining persistent identifiers for Their

Stuff is not especially purposeful or feasible for us to engage in.

There is little that we can do about someone else's stuff except

encourage their uptake or adoption of persistence services.

Co-location of persistent access and identification services is

natural. Any organization that undertakes ongoing support of true

persistent identification (which includes description) is well-

served if it controls, owns, or otherwise has clear internal access

to the identified objects, and this gives it an advantage if it

wishes also to support persistent access to outsiders. Conversely,

persistent access to outsiders requires orderly internal collection

management procedures that include monitoring, acquisition,

verification, and change control over objects, which in turn

requires object identifiers persistent enough to support auditable

record keeping practices.

Although organizing ARK support under one roof thus tends to make

sense, object hosting can successfully be separated from name

mapping. An example is when a name mapping authority centrally

provides uniform resolution services via a protocol gateway on

behalf of organizations that host objects behind a variety of access

protocols. It is also reasonable to build value-added description

¶

¶

¶

¶

¶

services that rely on the underlying services of a set of mapping

authorities.

Supporting ARKs is not for every organization. By requiring

specific, revealed commitments to preservation, to object access,

and to description, the bar for providing ARK services is higher

than for some other identifier schemes. On the other hand, it would

be hard to grant credence to a persistence promise from an

organization that could not muster the minimum ARK services. Not

that there isn't a business model for an ARK-like, description-only

service built on top of another organization's full complement of

ARK services. For example, there might be competition at the

description level for abstracting and indexing a body of scientific

literature archived in a combination of open and fee-based

repositories. The description- only service would have no direct

commitment to the objects, but would act as an intermediary,

forwarding commitment statements from object hosting services to

requestors.

1.4. Definition of Identifier

An identifier is not a string of character data -- an identifier is

an association between a string of data and an object. This

abstraction is necessary because without it a string is just data.

It's nonsense to talk about a string's breaking, or about its being

strong, maintained, and authentic. But as a representative of an

association, a string can do, metaphorically, the things that we

expect of it.

Without regard to whether an object is physical, digital, or

conceptual, to identify it is to claim an association between it and

a representative string, such as "Jane" or "ISBN 0596000278". What

gives a claim credibility is a set of verifiable assertions, or

metadata, about the object, such as age, height, title, or number of

pages. In other words, the association is made manifest by a record

(e.g., a cataloging or other metadata record) that vouches for it.

In the complete absence of any testimony (metadata) regarding an

association, a would-be identifier string is a meaningless sequence

of characters. To keep an externally visible but otherwise internal

string from being perceived as an identifier by outsiders, for

example, it suffices for an organization not to disclose the nature

of its association. For our immediate purpose, actual existence of

an association record is more important than its authenticity or

verifiability, which are outside the scope of this specification.

It is a gift to the identification process if an object carries its

own name as an inseparable part of itself, such as an identifier

imprinted on the first page of a document or embedded in a data

¶

¶

¶

¶

¶

structure element of a digital document header. In cases where the

object is large, unwieldy, or unavailable (such as when licensing

restrictions are in effect), a metadata record that includes the

identifier string will usually suffice. That record becomes a

conveniently manipulable object surrogate, acting as both an

association "receipt" and "declaration".

Note that our definition of identifier extends the one in use for

Uniform Resource Identifiers [RFC3986]. The present document still

sometimes (ab)uses the terms "ARK" and "identifier" as shorthand for

the string part of an identifier, but the context should make the

meaning clear.

2. ARK Anatomy

An ARK is represented by a sequence of characters (a string) that

contains the Label, "ark:", optionally preceded by the beginning

part of a URL. Here is a diagrammed example.

When embedded in a URL, an ARK consists of a Compact ARK preceded by

a Resolver Service. The larger URL-based ARK is known as a Mapping

ARK because it is ready to be mapped (resolved) to an information

response (eg, a PDF or metadata). A Mapping ARK is also know as a

"fully qualified ARK". The Resolver Service, which need not be

limited to URLs in the future, maps the URL according to rules and

abilities of an NMA (Name Mapping Authority). The same URL string

minus the Resolver Service component is known as a Compact ARK. The

Compact ARK is globally unique and may be resolvable via different

Resolver Services over time (eg, when one archive succeeds another)

or at the same time (eg, when one archive backs up another).

At a high level, after the Label comes the NAAN (Name Assigning

Authority Number) followed by the Name that it assigns to the

identified thing. The Base Name has Prefixes (NAAN, Label, possibly

a Resolver Service) and optional Suffixes to identify Parts and

Variant forms. During resolution, a Resolver Service such as n2t.net

¶

¶

¶

ANATOMY OVERVIEW

================

 Resolver Service Compact ARK

 __________________ ______________________________

 / \/ \

 https://example.org/ark:12345/x6np1wh8k/c3/s5.v7.xsl

 ___________________________/________/___________/

 Prefixes Base Name Suffixes

 __/

 Mapping ARK

¶

¶

may be able to deal with inflections query strings, and content

negotiation.

In a closer view, the Compact ARK consists of a Base Compact Name

followed potentially by Qualifiers. The Base Name often, but not

necessarily, consists of a Shoulder (for subdividing a NAAN

namespace) followed by a Blade. If a check character is present in

an ARK, by convention it is the right-most character of the Base

Name, and will have been computed over the string of characters

preceding it back to the beginning of the NAAN. This string,

including the check character itself, is the Check Zone.

Like the ARK itself, the NAAN "12345" and Shoulder "x6" have compact

and fully qualified forms.

Form Base Compact Form Fully Qualified Form

NAAN 12345 ark:12345 https://example.org/ark:12345

Shoulder x6 ark:12345/x6 https://example.org/ark:12345/x6

Table 1: Example base, compact, and fully qualified form

components.

The ARK syntax can be summarized,

where the NMA, '/', and Qualifier parts are in brackets to indicate

that they are optional. The Base Compact Name is the substring

comprising the "ark:" label, the NAAN and the assigned Name. The

Resolver Service is replaceable and makes the ARK actionable for a

period of time. Without the Resolver Service part, what remains is

the Core Immutable Identity (the "persistible") part of the ARK.

2.1. The Name Mapping Authority (NMA)

Before the "ark:" label may appear an optional Name Mapping

Authority (NMA) that is a temporary address where ARK service

¶

 ANATOMY DETAILS

 ===============

 Base Compact Name Qualifiers

 _________________ ___________

 / \/ \

 https://example.org/ark:12345/x6np1wh8k/c3/s5.v7.xsl

 _________/ __/___/_/_____/____/_____/

 NMA Label NAAN | Blade Parts Variants

 Shoulder

 _____________/

 Check Zone

¶

¶

¶

¶

[https://NMA/]ark:[/]NAAN/Name[Qualifiers]¶

¶

requests may be sent. Preceded by a URI-type protocol designation

such as "https://", it specifies a Resolver Service. The NMA itself

is an Internet hostname or host/port combination, optionally

followed by URI-type path components, all ending in a '/'. The

hostname has the same format and semantics as the host/port part of

a URL. In any optional path that follows it, the path is considered

to end with the '/' in the first occurrence of "/ark:".

The most important thing about the NMA is that it is "identity

inert" from the point of view of object identification. In other

words, ARKs that differ only in the optional NMA part identify the

same object. Thus, for example, the following three ARKs are

synonyms for just one information object:

Strictly speaking, in the realm of digital objects, these ARKs may

lead over time to somewhat different or diverging instances of the

originally named object. It can be argued that divergence of

persistent objects is not desirable, but it is widely believed that

digital preservation efforts will inevitably lead to alterations in

some original objects (e.g, a format migration in order to preserve

the ability to display a document). If any of those objects are held

redundantly in more than one organization (a common preservation

strategy), chances are small that all holding organizations will

perform the same precise transformations and all maintain the same

object metadata. More significant divergence would be expected when

the holding organizations serve different audiences or compete with

each other.

The NMA part makes an ARK into an actionable URL. As with many

Internet parameters, it is helpful to approach the NMA being liberal

in what you accept and conservative in what you propose. From the

recipient's point of view, the NMA part should be treated as

temporary, disposable, and replaceable. From the NMA's point of

view, it should be chosen with the greatest concern for longevity. A

carefully chosen NMA should be at least as permanent as the

providing organization's own hostname. In the case of a national or

university library, for example, there is no reason why the NMA

could not be considerably more permanent than soft-funded proxy

hostnames such as hdl.handle.net, dx.doi.org, and purl.org. In

general and over time, however, it is not unexpected for an NMA

eventually to stop working and require replacement with the NMA of a

currently active service provider.

This replacement relies on a mapping authority "resolver" discovery

process, of which two alternate methods are outlined in a later

¶

¶

 http://example.org/rslvr/ark:12345/x6np1wh8k

 https://example.com/ark:12345/x6np1wh8k

 ark:12345/x6np1wh8k

¶

¶

¶

section. The ARK, URN, Handle, and DOI schemes all use a resolver

discovery model that sooner or later requires matching the original

assigning authority with a current provider servicing that

authority's named objects; once found, the resolver at that provider

performs what amounts to a redirect to a place where the object is

currently held. All the schemes rely on the ongoing functionality of

currently mainstream technologies such as the Domain Name System

[RFC1034] and web browsers. The Handle and DOI schemes in addition

require that the Handle protocol layer and global server grid be

available at all times.

The practice of prepending "https://" and an NMA to an ARK is a way

of creating an actionable identifier by a method that is itself

temporary. Assuming that infrastructure supporting [RFC2616]

information retrieval will no longer be available one day, ARKs will

then have to be converted into new kinds of actionable identifiers.

By that time, if ARKs see widespread use, web browsers would

presumably evolve to perform this (currently simple) transformation

automatically.

2.2. The ARK Label Part (ark:)

The label part distinguishes an ARK from an ordinary identifier.

There is a new form of the label, "ark:", and an old form, "ark:/",

both of which must be recognized in perpetuity. Implementations

should generate new ARKs in the new form (without the "/") and

resolvers must always treat received ARKs as equivalent if they

differ only in regard to new form versus old form labels. Thus these

two ARKs are equivalent:

In a URL found in the wild, the label indicates that the URL stands

a reasonable chance of being an ARK. If the context warrants,

verification that it actually is an ARK can be done by testing it

for existence of the three ARK services.

Since nothing about an identifier syntax directly affects

persistence, the "ark:" label (like "urn:", "doi:", and "hdl:")

cannot tell you whether the identifier is persistent or whether the

object is available. It does tell you that the original Name

Assigning Authority (NAA) had some sort of hopes for it, but it

doesn't tell you whether that NAA is still in existence, or whether

a decade ago it ceased to have any responsibility for providing

persistence, or whether it ever had any responsibility beyond

naming. An NAA identifies an autonomous assignment stream for a set

of objects as well as a reference to help locate a resolver for

them. Often, NAA policies and practices reflect an organization

¶

¶

¶

 ark:/12345/x6np1wh8k

 ark:12345/x6np1wh8k

¶

¶

(department, project, data center, periodical, etc.) in which it is

embedded. An organization may have more than one NAA, for example, a

publisher may have a distinct NAA for each of its three journals.

Only a current provider can say for certain what sort of commitment

it intends, and the ARK label suggests that you can query the NMA

directly to find out exactly what kind of persistence is promised.

Even if what is promised is impersistence (i.e., a short-term

identifier), saying so is valuable information to the recipient.

Thus an ARK is a high-functioning identifier in the sense that it

provides access to the object, the metadata, and a commitment

statement, even if the commitment is explicitly very weak.

2.3. The Name Assigning Authority Number (NAAN)

Recalling that the general form of the ARK is,

the part of the ARK directly following the "ark:" (or older "ark:/")

label is the Name Assigning Authority Number (NAAN), up to but not

including the next '/' (slash) character. This part is always

required, as it identifies the organization that originally assigned

the Name of the object. Typically the organization is an

institution, a department, a laboratory, or any group that conducts

a stable, policy-driven name assigning effort. An organization may

request a NAAN from the ARK Maintenance Agency [ARKagency]

(described in Appendix A) by filling out the form [NAANrequest].

For received ARKs, implementations must support a minimum NAAN

length of 16 octets. NAANs are opaque strings of one or more

"betanumeric" characters, specifically,

which consists of digits and consonants, minus the letter 'l'.

Restricting NAANs to betanumerics (alphanumerics without vowels or

'l') serves two goals. It reduces the chances that words -- past,

present, and future -- will appear in NAANs and carry unintended

semantics. It also helps usability by not mixing commonly confused

characters ('0' and 'O', '1' and 'l') and by being compatible with

strong transcription error detection (eg, the [NOID] check digit

algorithm). Since 2001, every assigned NAAN has consisted of exactly

five digits.

The NAAN designates a top-level ARK namespace. Once registered for a

namespace, a NAAN is never re-registered. It is possible, however,

for there to be a succession of organizations that manage an ARK

namespace.

¶

¶

¶

 [https://NMA/]ark:[/]NAAN/Name[Qualifiers]¶

¶

¶

 0123456789bcdfghjkmnpqrstvwxz¶

¶

¶

There are currently four NAANs available for assignment on reserved

shoulders (see the Shoulder section) by all organizations. An ARK

bearing one of these NAANs carries a specific, immutable meaning

that recipients can rely on for long term pragmatic benefit as

described below.

Shared

NAAN

meaning

The immutable purpose, meaning, or

connotation of ARKs bearing this

NAAN.

Expect

to

resolve?

OK for long

term

reference?

12345

examples

Example ARKs appearing in

documentation. They might resolve,

but link checkers usually need not

be concerned if they don't. They

should not be considered viable

for long term reference.

maybe no

99152

terms

ARKs for controlled vocabulary and

ontology terms, such as metadata

element names and pick-list

values. They should resolve to

term definitions and are suitable

for long term reference.

yes yes

99166

agents

ARKs for people, groups, and

institutions as "agents" (actors,

such as creators, contributors,

publishers, performers, etc). They

should resolve to agent

definitions and are suitable for

long term reference.

yes yes

99999

test ids

ARKs for test, development, or

experimental purposes, often at

scale. They might resolve, but

link checkers usually need not be

concerned if they don't. They

should not be considered viable

for long term reference.

maybe no

Table 2: Four NAANs shared across all ARK-assigning organizations.

To make use of a shared NAAN, an organization has several options

described in Section 2.4.1.

2.4. The Name Part

The part of the ARK just after the NAAN is the Name assigned by the

NAA, and it is also required. Semantic opaqueness in the Name part

is strongly encouraged in order to reduce an ARK's vulnerability to

era- and language-specific change. Identifier strings containing

linguistic fragments can create support difficulties down the road.

No matter how appropriate or even meaningless they are today, such

¶

¶

fragments may one day create confusion, give offense, or infringe on

a trademark as the semantic environment around us and our

communities evolves.

Names that look more or less like numbers avoid common problems that

defeat persistence and international acceptance. The use of digits

is highly recommended. Mixing in non-vowel alphabetic characters

(eg, betanumerics) a couple at a time is a relatively safe and easy

way to achieve a denser namespace (more possible names for a given

length of the name string). Such names have a chance of aging and

traveling well. The absence of recognizable words makes typos harder

to detect in opaque strings, so a common mitigation is to add a

check character. Tools exists that mint, bind, and resolve opaque

identifiers, with or without check characters [NOID]. More on naming

considerations is given in a subsequent section.

2.4.1. Optional: Shoulders

Just as an ARK namespace is subdivided by NAANs reserved for NAAs,

it is generally advantageous for an NAA to subdivide its own NAAN

namespace into "shoulders", where each shoulder is reserved for an

internal department or unit. Like the NAAN, which is a string of

characters that follows the "ark:" label, a shoulder is a string of

characters (starting with a "/") that extends the NAAN. The base

compact name assigned by the NAA consists of the NAAN, the shoulder,

a final string known as the "blade". (The shoulder plus blade

terminology mirrors locksmith jargon describing the information-

bearing parts of a key.)

The blade string is chosen by the NAA such that the string created

by concatenating the NAAN plus shoulder plus blade becomes the

unique base object name. Otherwise the blade may come from any

source, for example, it might come from a counter, a timestamp, a

[NOID] minter, a legacy 100-year-old accession number, etc. If there

is a check digit, it is expected to appear at the end of the blade

and to be computed over the base compact name minus the label part

(see Check Zone), which is generally the most important part of an

ARK to make opaque. In particular, check digits are not expected to

cover qualifiers, which often name subobjects of a persistent object

that are less stable and less opaquely named than the parent object

(for example, ten years hence, the object's thumbnail image will be

of a higher resolution and the OCR text file will be re-derived with

improved algorithms.

It is important not to use any delimiter between the shoulder string

and blade string, especially not a "/" since it declares an object

boundary (see the section on ARKs that reveal object hierarchy).

¶

¶

¶

¶

¶

This little bit of discretion shields organizations from end users

making inferences about expected levels of support based on

recognizable shoulders. To help in-house ARK administrators reliably

know where the shoulder ends, it is recommended to use the "first-

digit convention" so that shoulders are "primordinal". A primordinal

shoulder is a sequence of one or more betanumeric characters ending

in a digit, as shown above. This means that the shoulder is all

consonant letters (often just one) after the NAAN and "/" up to and

including the first digit encountered after the NAAN. One property

of primordinal shoulders is that there is an infinite number of them

possible under any NAAN.

To help manage each namespace into the future, NAAs are encouraged

to create shoulders, even if there is only one to start with. If an

organization wishes to create a shoulder under one of shared NAANs

(99999, 12345, 99152, or 99166, described in Table 2), it should

fill out the Shoulder Request Form [shoulderrequest].

2.5. The Qualifier Part

The part of the ARK following the NAA-assigned Name is an optional

Qualifier. It is a string that extends the Base Name in order to

create a kind of service entry point into the object named by the

NAA. At the discretion of the providing NMA, such a service entry

point permits an ARK to support access to individual hierarchical

components and subcomponents of an object, and to variants

(versions, languages, formats) of components. A Qualifier may be

invented by the NAA or by any NMA servicing the object.

In form, the Qualifier is a ComponentPath, or a VariantPath, or a

ComponentPath followed by a VariantPath. A VariantPath is introduced

and subdivided by the reserved character '.', and a ComponentPath is

introduced and subdivided by the reserved character '/'. In this

example,

the string "/c3/s5" is a ComponentPath and the string ".v7.xsl" is a

VariantPath. The ARK Qualifier is a formalization of some currently

mainstream URL syntax conventions. This formalization specifically

reserves meanings that permit recipients to make strong inferences

about logical sub-object containment and equivalence based only on

the form of the received identifiers; there is great efficiency in

not having to inspect metadata records to discover such

relationships. NMAs are free not to disclose any of these

 ark:12345/x6np1wh8k/c2/s4.pdf # correct primordinal shoulder

 ark:12345/x6/np1wh8k/c2/s4.pdf # INCORRECT

 ^ WRONG

¶

¶

¶

¶

¶

 https://example.org/ark:12345/x6np1wh8k/c3/s5.v7.xsl¶

relationships merely by avoiding the reserved characters above.

Hierarchical components and variants are discussed further in the

next two sections.

The Qualifier, if present, differs from the Name in several

important respects. First, a Qualifier may have been assigned either

by the NAA or later by the NMA. The assignment of a Qualifier by an

NMA effectively amounts to an act of publishing a service entry

point within the conceptual object originally named by the NAA. For

our purposes, an ARK extended with a Qualifier assigned by an NMA

will be called an NMA-qualified ARK.

Second, a Qualifier assignment on the part of an NMA is made in

fulfillment of its service obligations and may reflect changing

service expectations and technology requirements. NMA-qualified ARKs

could therefore be transient, even if the base, unqualified ARK is

persistent. For example, it would be reasonable for an NMA to

support access to an image object through an actionable ARK that is

considered persistent even if the experience of that access changes

as linking, labeling, and presentation conventions evolve and as

format and security standards are updated. For an image "thumbnail",

that NMA could also support an NMA-qualified ARK that is considered

impersistent because the thumbnail will be replaced with higher

resolution images as network bandwidth and CPU speeds increase. At

the same time, for an originally scanned, high-resolution master,

the NMA could publish an NMA-qualfied ARK that is itself considered

persistent. Of course, the NMA must be able to return its separate

commitments to unqualified, NAA-assigned ARKs, to NMA-qualified

ARKs, and to any NAA-qualified ARKs that it supports.

A third difference between a Qualifier and a Name concerns the

semantic opaqueness constraint. When an NMA-qualified ARK is to be

used as a transient service entry point into a persistent object,

the priority given to semantic opaqueness observed by the NAA in the

Name part may be relaxed by the NMA in the Qualifier part. If

service priorities in the Qualifier take precedence over

persistence, short- term usability considerations may recommend

somewhat semantically laden Qualifier strings.

Finally, not only is the set of Qualifiers supported by an NMA

mutable, but different NMAs may support different Qualifier sets for

the same NAA-identified object. In this regard the NMAs act

independently of each other and of the NAA.

The next two sections describe how ARK syntax may be used to

declare, or to avoid declaring, certain kinds of relatedness among

qualified ARKs.

¶

¶

¶

¶

¶

¶

2.5.1. ARKs that Reveal Object Hierarchy

An NAA or NMA may choose to reveal the presence of a hierarchical

relationship between objects using the '/' (slash) character after

the Name part of an ARK. Some authorities will choose not to

disclose this information, while others will go ahead and disclose

so that manipulators of large sets of ARKs can infer object

relationships by simple identifier inspection; for example, this

makes it possible for a system to present a collapsed view of a

large search result set.

If the ARK contains an internal slash after the NAAN, the piece to

its left indicates a containing object. For example, publishing an

ARK of the form,

is equivalent to publishing three ARKs,

together with a declaration that the first object is contained in

the second object, and that the second object is contained in the

third.

Revealing the presence of hierarchy is completely up to the assigner

(NMA or NAA). It is hard enough to commit to one object's name, let

alone to three objects' names and to a specific, ongoing relatedness

among them. Thus, regardless of whether hierarchy was present

initially, the assigner, by not using slashes, reveals no shared

inferences about hierarchical or other inter-relatedness in the

following ARKs:

Note that slashes around the ARK's NAAN (/12345/ in these examples)

are not part of the ARK's Name and therefore do not indicate the

existence of some sort of NAAN super object containing all objects

in its namespace. A slash must have at least one non-structural

character (one that is neither a slash nor a period) on both sides

in order for it to separate recognizable structural components. So

initial or final slashes may be removed, and double slashes may be

converted into single slashes.

¶

¶

 ark:12345/x54/xz/321¶

¶

 ark:12345/x54/xz/321

 ark:12345/x54/xz

 ark:12345/x54

¶

¶

¶

 ark:12345/x54_xz_321

 ark:12345/x54_xz

 ark:12345/x54xz321

 ark:12345/x54xz

 ark:12345/x54

¶

¶

2.5.2. ARKs that Reveal Object Variants

An NAA or NMA may choose to reveal the possible presence of variant

objects or object components using the '.' (period) character after

the Name part of an ARK. Some authorities will choose not to

disclose this information, while others will go ahead and disclose

so that manipulators of large sets of ARKs can infer object

relationships by simple identifier inspection. This makes it

possible for a system to present a collapsed view of a large number

of search result items without having to issue database queries in

order to retrieve and analyze the inter-relatedness among all of

those items.

If the ARK contains an internal period after the Name, the piece to

the left of the first such period is a root name and the piece to

its right, and up to the end of the ARK or to the next period is a

suffix. A Name may have more than one suffix, for example,

There are two main rules. First, if two ARKs share the same root

name but have different suffixes, the corresponding objects were

considered variants of each other (different formats, languages,

versions, etc.) by the assigner (NMA or NAA). Thus, the following

ARKs are variants of each other:

Second, publishing an ARK with a suffix implies the existence of at

least one variant identified by the ARK without its suffix. The ARK

is otherwise silent about what additional variants might exist. So

publishing the ARK,

is equivalent to publishing the four ARKs,

Revealing the possibility of variants is completely up to the

assigner. It is hard enough to commit to one object's name, let

alone to multiple variants' names and to a specific, ongoing

relatedness among them. The assigner is the sole arbiter of what

¶

¶

 ark:12345/x54.24

 ark:12345/x4z/x54.24

 ark:12345/x54.v18.fr.odf

¶

¶

 ark:12345/x54.v18.fr.odf

 ark:12345/x54.321xz

 ark:12345/x54.44

¶

¶

 ark:12345/x54.v18.fr.odf¶

¶

 ark:12345/x54.v18.fr.odf

 ark:12345/x54.v18.fr

 ark:12345/x54.v18

 ark:12345/x54

¶

constitutes a variant within its namespace, and whether to reveal

that kind of relatedness by using periods within its names.

A period must have at least one non-structural character (one that

is neither a slash nor a period) on both sides in order for it to

separate recognizable structural components. So initial or final

periods may be removed, and adjacent periods may be converted into a

single period.

3. ARK Processing

3.1. Character Repertoires

The Name and Qualifier parts are strings of visible ASCII

characters. For received ARKs, implementations must support a

minimum length of 255 octets for the string composed of the Base

Name plus Qualifier. Implementations generating strings exceeding

this length should understand that receiving implementations may not

be able to index such ARKs properly. Characters may be letters,

digits, or any of these seven characters:

The following characters may also be used, but their meanings are

reserved:

The characters '/' and '.' are ignored if either appears as the last

character of an ARK. If used internally, they allow a name assigner

to reveal object hierarchy and object variants as previously

described.

Hyphens are considered to be insignificant and are always ignored in

ARKs. A '-' (hyphen) may appear in an ARK for readability, or it may

have crept in during the formatting and wrapping of text, but it

must be ignored in lexical comparisons. As in a telephone number,

hyphens have no meaning in an ARK. It is always safe for an NMA that

receives an ARK to remove any hyphens found in it. As a result, like

the NMA, hyphens are "identity inert" in comparing ARKs for

equivalence. For example, the following ARKs are equivalent for

purposes of comparison and ARK service access:

The '%' character is reserved for %-encoding all other octets that

would appear in the ARK string, in the same manner as for URIs

[RFC3986]. A %-encoded octet consists of a '%' followed by two

¶

¶

¶

 = ~ * + @ _ $¶

¶

 % - . /¶

¶

¶

 ark:12345/x5-4-xz-321

 https://sneezy.dopey.com/ark:12345/x54--xz32-1

 ark:12345/x54xz321

¶

uppercase hex digits; for example, "%7D" stands in for '}'.

Uppercase hex digits are preferred for compatibility with URI

encoding conventions, especially useful when URL-based ARKs are

compared for equivalence by ARK-unaware software systems; thus use

"%ACT" instead of "%acT". The character '%' itself must be

represented using "%25". As with URNs, %-encoding permits ARKs to

support legacy namespaces (e.g., ISBN, ISSN, SICI) that have less

restricted character repertoires [RFC2288].

Implementors should be prepared to normalize some common invalid

characters that may be found in ARKs copy pasted from processed

text. For example, when pasting an ARK that was broken during line

wrapping, a user may inadvertently propagate newlines, spaces,

hyphens, and hyphen-like characters (eg, U+2010 to U+2015) that were

introduced by the publisher. The normalization strategy is up to the

implementor and may include converting hyphen-like characters to

hyphens and removing whitespace.

3.2. Normalization and Lexical Equivalence

To determine if two or more ARKs identify the same object, the ARKs

are compared for lexical equivalence after first being normalized.

Since ARK strings may appear in various forms (e.g., having

different NMAs), normalizing them minimizes the chances that

comparing two ARK strings for equality will fail unless they

actually identify different objects. In a specified-host ARK (one

having an NMA), the NMA never participates in such comparisons.

Normalization described here serves to define lexical equivalence

but does not restrict how implementors normalize ARKs locally for

storage.

Normalization of a received ARK for the purpose of octet-by-octet

equality comparison with another ARK consists of the following

steps.

The NMA part (eg, everything from an initial "https://" up to

the first occurrence of "/ark:"), if present is removed.

Any URI query string is removed (everything from the first

literal '?' to the end of the string).

The first case-insensitive match on "ark:/" or "ark:" is

converted to "ark:" (replacing any uppercase letters and

removing any terminal '/').

Any uppercase letters in the NAAN are converted to lowercase.

In the string that remains, the two characters following every

occurrence of '%' are converted to uppercase. The case of all

other letters in the ARK string must be preserved.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. ¶

5.

¶

All hyphens are removed. Implementors should be aware that non-

ASCII hyphen-like characters (eg, U+2010 to U+2015) may arrive

in the place of hyphens and, if they wish, remove them.

If normalization is being done as part of a resolution step,

and if the end of the remaining string matches a known

inflection, the inflection is noted and removed.

Structural characters (slash and period) are normalized:

initial and final occurrences are removed, and two structural

characters in a row (e.g., // or ./) are replaced by the first

character, iterating until each occurrence has at least one

non-structural character on either side.

If there are any components with a period on the left and a

slash on the right, either the component and the preceding

period must be moved to the end of the Name part or the ARK

must be thrown out as malformed.

The resulting ARK string is now normalized. Comparisons between

normalized ARKs are case-sensitive, meaning that uppercase letters

are considered different from their lowercase counterparts.

To keep ARK string variation to a minimum, no reserved ARK

characters should be %-encoded unless it is deliberately to conceal

their reserved meanings. No non-reserved ARK characters should ever

be %-encoded. Finally, no %-encoded character should ever appear in

an ARK in its decoded form.

3.3. Resolver Chains and Roles

To resolve a Compact ARK (ie, an ARK beginning "ark:") it must

initially be promoted to a Mapping ARK so that it becomes

actionable. On the web, this means finding a suitable web Resolver

Service to prepend to the compact form of the identifier in order to

convert it to a URL (cf [CURIE]). (This is more or less true for any

type of identifier not already in URL form.)

The identifier's Resolver Service is the first point of contact in

the resolution process (eg, the NMA in a typical URL). It can be

seen as the "first resolver" because resolution may involve multiple

redirections via a chain of resolvers before a resolution response

is returned by the last resolver (the "responder"). The chain is as

long as the number of redirections. In particular, when the first

resolver is also the last resolver, the chain has zero length. Most

ARKs using N2T.net as the first resolver will be redirected to a

second resolver listed in the record for a given ARK's NAAN. For

example, an ARK bearing the NAAN 12148 (BnF) and the NMA n2t.net (as

its first resolver) could be redirected to a second resolver,

ark.bnf.fr. Whether n2t.net or ark.bnf.fr will be the first resolver

6.

¶

7.

¶

8.

¶

9.

¶

¶

¶

¶

depends on what NMA appears in the ARK at the time of resolution.

Currently, BnF ARKs are published with the BnF's NMA (ark.bnf.fr),

so most BnF ARKs will not start with n2t.net.

Resolution in general can be seen as a multi-stage computation that

maps a client identifier to some sort of response. On the web, each

resolver in the chain is an HTTP server; even if the "responder"

(last resolver) is a proxy server that intiates a non-web sub-

resolution process, that is invisible to the original client and out

of scope for this discussion. A web resolution response may take on

a variety of forms, including the return of a landing page, or a

metadata record, or a web-based 404 Not Found message. A given

response, as well as the specific chain of resolvers traversed,

depends not only on the identifier, but also on such things as the

time, location, credentials, and technical platform of the client

initiating resolution.

Also, for a given identifier, the "responder" (last resolver) for an

object request may be different from the responder for a metadata

request. While maintenance of objects and their metadata are often

co-located in one organization, for technical reasons it is not

uncommon that requests for objects and metadata are forwarded to

different responders. To add credibility to a persistence promise,

it can be useful to maintain a secondary copy of object metadata at

an external and publicly visible resolver. For example, N2T.net was

originally designed to store a secondary copy of metadata for many

millions of identifiers.

3.4. Finding a Resolver Service

In order to derive an actionable identifier (these days, a URL) from

an ARK, a Resolver Service must be found. On the web, the Resolver

Service consists of a URI scheme and an NMA, where the NMA is a host

or host/port combination, optionally followed by URI-type path

components, all ending in a '/'. The Resolver Service is expected to

respond to basic ARK service requests. An NMA may provide mapping

services for more than one NAAN.

Upon encountering an ARK, a user (or client software) determines if

it is a Mapping ARK (ie, it is a URL beginning with a Resolver

Service). If the Resolver Service is working, this discovery step

likely can be skipped assuming the URL correctly identifies a

working resolver. If a new Resolver Service needs to be found, the

client looks inside the ARK again for the NAAN (Name Assigning

Authority Number). Querying a global database, it then uses the NAAN

to look up all current Resolver Services that service ARKs issued by

the identified NAA. This NAAN-to-NMA resolver discovery method is

common (cf URN, Handle, DOI) but does not address the namespace

splitting problem, which is when a portion of a NAAN space

¶

¶

¶

¶

originally maintained entirely by one NMA is taken on by a second

NMA; now the NAAN alone cannot reveal which NMA (resolver) to

choose.

The global database is key, and ideally the lookup would be

automatic and transparent to the user. For this, the current

mainstream method is the Name-to-Thing (N2T) Resolver [N2T] at

n2t.net. It is based on a plain text [NAANregistry] database

containing explanatory comments, so it can also be directly

inspected by users, for example, to manually find a Resolver

Service. N2T is a reliable, low-cost Resolver Service provided by

the ARK Alliance primarily to support actionable HTTP-based URLs for

as long as HTTP is used. N2T scales to store and resolve over 100

million individual identifiers and their metadata, and has played a

valuable role in persistent identification by keeping a redundant

copy of identifier metadata. Because it has the option of storing

redirection information for individual identifiers rather than just

at the name assigning authority level, N2T can deal with namespace

splitting; when a portion of a NAAN space maintained by one NMA is

taken on by a second NMA, N2T can rely on individual identifier

redirects for that portion and a single NAAN-based rule for the

remainder.

An appendix describes an historical way to discover an NMA based on

a simplification of the URN resolver discovery method, itself very

similar in principle to the resolver discovery method used by

Handles and DOIs. None of these methods does more than what can be

done with a very small, consortially maintained web server such as

[N2T].

In the interests of long-term persistence, however, ARK mechanisms

are first defined in high-level, protocol-independent terms so that

mechanisms may evolve and be replaced over time without compromising

fundamental service objectives. Either or both specific methods

given here may eventually be supplanted by better methods since, by

design, the ARK scheme does not depend on a particular method, but

only on having some method to locate an active NMA.

At the time of issuance, at least one NMA for an ARK should be

prepared to service it. That NMA may or may not be administered by

the Name Assigning Authority (NAA) that created it. Consider the

following hypothetical example of providing long-term access to a

cancer research journal. The publisher wishes to turn a profit and a

national library wishes to preserve the scholarly record. An

agreement might be struck whereby the publisher would act as the NAA

and the national library would archive the journal issue when it

appears, but without providing direct access for the first six

months. During the first six months of peak commercial viability,

the publisher would retain exclusive delivery rights and would

¶

¶

¶

¶

charge access fees. Again, by agreement, both the library and the

publisher would act as NMAs, but during that initial period the

library would redirect requests for issues less than six months old

to the publisher. At the end of the waiting period, the library

would then begin servicing requests for issues older than six months

by tapping directly into its own archives. Meanwhile, the publisher

might routinely redirect incoming requests for older issues to the

library. Long-term access is thereby preserved, and so is the

commercial incentive to publish content.

Although it will be common for an NAA also to run an NMA service, it

is never a requirement. Over time NAAs and NMAs will come and go.

One NMA will succeed another, and there might be many NMAs serving

the same ARKs simultaneously (e.g., as mirrors or as competitors).

There might also be asymmetric but coordinated NMAs as in the

library-publisher example above.

4. Naming Considerations

The most important threats faced by persistence providers include

such things as funding loss, natural disaster, political and social

upheaval, processing faults, and errors in human oversight. There is

nothing that an identifer scheme can do about such things. Still, a

few observed identifier failures and inconveniences can be traced

back to naming practices that we now know to be less than optimal

for persistence.

4.1. ARKS and Usability

Because linguistic constructs imperil persistence, for ARKs non-

ASCII character support is not a priority. ARKs and URIs share goals

of transcribability and transportability within web documents, so

characters are required to be visible, non-conflicting with HTML/XML

syntax, and not subject to tampering during transmission across

common transport gateways.

Any measure that reduces user irritation with an identifier will

increase its chances of acceptance, hence survival. Irritation can

arise when common user assumptions are not shared by service

providers. For example, providers may wish to avoid leading zeroes

in an identifier component that looks like a number because users

who assume that leading zeroes contribute nothing to that quantity

may omit them during transcription. Also, unless an identifier

already employs mixed case letters, users often assume uppercase

letters to be equivalent to their lowercase counterparts, in which

instance (e.g., a shoulder that employs only one case) a provider

may wish to accept incoming ARKs in either uppercase or lowercase.

Another common user assumption is that hyphens are lexically

insignificant. It is fine to publish ARKs with hyphens in them

¶

¶

¶

¶

(e.g., such as the output of UUID/GUID generators), but the uniform

treatment of hyphens (and their Unicode equivalents) as

insignificant reduces the possibility of identifiers breaking when

users omit hyphens or when word processors add them.

4.2. Objects Should Wear Their Identifiers

A valuable technique for provision of persistent objects is to try

to arrange for the complete identifier to appear on, with, or near

its retrieved object. An object encountered at a moment in time when

its discovery context has long since disappeared could then easily

be traced back to its metadata, to alternate versions, to updates,

etc. This has seen reasonable success, for example, in book

publishing and software distribution. An identifier string only has

meaning when its association is known, and this a very sure, simple,

and low-tech method of reminding everyone exactly what that

association is.

4.3. Names are Political, not Technological

If persistence is the goal, a deliberate local strategy for

systematic name assignment is crucial. Names must be chosen with

great care. Poorly chosen and managed names will devastate any

persistence strategy, and they do not discriminate by identifier

scheme. Whether a mistakenly re-assigned name is a URN, DOI, PURL,

URL, or ARK, the damage -- failed access and confusion -- is not

mitigated more in one scheme than in another. Conversely, in-house

efforts to manage names responsibly will go much further towards

safeguarding persistence than any choice of naming scheme or name

resolution technology.

Branding (e.g., at the corporate or departmental level) is important

for funding and visibility, but substrings representing brands and

organizational names should be given a wide berth except when

absolutely necessary in the hostname (the identity-inert) part of

the ARK. These substrings are not only unstable because

organizations change frequently, but they are also dangerous because

successor organizations often have political or legal reasons to

actively suppress predecessor names and brands. Any measure that

reduces the chances of future political or legal pressure on an

identifier will decrease the chances that our descendants will be

obliged to deliberately break it.

4.4. Choosing a Hostname or NMA

Hostnames appearing in any identifier meant to be persistent must be

chosen with extra care. The tendency in hostname selection has

traditionally been to choose a token with recognizable attributes,

such as a corporate brand, but that tendency wreaks havoc with

¶

¶

¶

¶

persistence that is supposed to outlive brands, corporations,

subject classifications, and natural language semantics (e.g., what

did the three letters "gay" mean in 1958, 1978, and 1998?). Today's

recognized and correct attributes are tomorrow's stale or incorrect

attributes. In making hostnames (any names, actually) long-term

persistent, it helps to eliminate recognizable attributes to the

extent possible. This affects selection of any name based on URLs,

including PURLs and the explicitly disposable NMAs.

There is no excuse for a provider that manages its internal names

impeccably not to exercise the same care in choosing what could be

an exceptionally durable hostname, especially if it would form the

prefix for all the provider's URL-based external names. Registering

an opaque hostname in the ".org" or ".net" domain would not be a bad

start. Another way is to publish your ARKs with an organizational

domain name that will be mapped by DNS to an appropriate NMA host.

This makes for shorter names with less branding vulnerability.

It is a mistake to think that hostnames are inherently unstable. If

you require brand visibility, that may be a fact of life. But things

are easier if yours is the brand of long-lived cultural memory

institution such as a national or university library or archive.

Well-chosen hostnames from organizations that are sheltered from the

direct effects of a volatile marketplace can easily provide longer-

lived global resolvers than the domain names explicitly or

implicitly used as starting points for global resolution by

indirection-based persistent identifier schemes. For example, it is

hard to imagine circumstances under which the Library of Congress'

domain name would disappear sooner than, say, "handle.net".

For smaller libraries, archives, and preservation organizations,

there is a natural concern about whether they will be able to keep

their web servers and domain names in the face of uncertain funding.

One option is to form or join a group of like-minded organizations

with the purpose of providing mutual preservation support. The first

goal of such a group would be to perpetually rent a hostname on

which to establish a web server that simply redirects incoming

member organization requests to the appropriate member server; using

ARKs, for example, a 150-member group could run a very small server

(24x7) that contained nothing more than 150 rewrite rules in its

configuration file. Even more helpful would be additional consortial

support for a member organization that was unable to continue

providing services and needed to find a successor archival

organization. This would be a low-cost, low-tech way to publish ARKs

(or URLs) under highly persistent hostnames.

There are no obvious reasons why the organizations registering DNS

names, URN Namespaces, and DOI publisher IDs should have among them

one that is intrinsically more fallible than the next. Moreover, it

¶

¶

¶

¶

is a misconception that the demise of DNS and of HTTP need adversely

affect the persistence of URLs. At such a time, certainly URLs from

the present day might not then be actionable by our present-day

mechanisms, but resolution systems for future non-actionable URLs

are no harder to imagine than resolution systems for present-day

non- actionable URNs and DOIs. There is no more stable a namespace

than one that is dead and frozen, and that would then characterize

the space of names bearing the "http://" or "https://" prefix. It is

useful to remember that just because hostnames have been carelessly

chosen in their brief history does not mean that they are unsuitable

in NMAs (and URLs) intended for use in situations demanding the

highest level of persistence available in the Internet environment.

A well-planned name assignment strategy is everything.

4.5. Assigners of ARKs

A Name Assigning Authority (NAA) is an organization that creates (or

delegates creation of) long-term associations between identifiers

and information objects. Examples of NAAs include national

libraries, national archives, and publishers. An NAA may arrange

with an external organization for identifier assignment. The US

Library of Congress, for example, allows OCLC (the Online Computer

Library Center, a major world cataloger of books) to create

associations between Library of Congress call numbers (LCCNs) and

the books that OCLC processes. A cataloging record is generated that

testifies to each association, and the identifier is included by the

publisher, for example, in the front matter of a book.

An NAA does not so much create an identifier as create an

association. The NAA first draws an unused identifier string from

its namespace, which is the set of all identifiers under its

control. It then records the assignment of the identifier to an

information object having sundry witnessed characteristics, such as

a particular author and modification date. A namespace is usually

reserved for an NAA by agreement with recognized community

organizations (such as IANA and ISO) that all names containing a

particular string be under its control. In the ARK an NAA is

represented by the Name Assigning Authority Number (NAAN).

The ARK namespace reserved for an NAA is the set of names bearing

its particular NAAN. For example, all strings beginning with "ark:

12345/" are under control of the NAA registered under 12345, which

might be the National Library of Finland. Because each NAA has a

different NAAN, names from one namespace cannot conflict with those

from another. Each NAA is free to assign names from its namespace

(or delegate assignment) according to its own policies. These

policies must be documented in a manner similar to the declarations

required for URN Namespace registration [RFC2611].

¶

¶

¶

¶

Organizations can request or update a NAAN by filling out the NAAN

Request Form [NAANrequest].

4.6. NAAN Namespace Management

Every NAA should have a namespace management strategy. A classic

hierarchical approach is to partition a NAAN namespace into

subnamespaces known as "shoulders". As explained in Section 2.4.1,

each shoulder is a unique prefix that guarantees non-collision of

names in different partitions. This practice is strongly encouraged

for all NAAs, especially when subnamespace management and assignment

streams will be delegated to departments, units, or projects within

an organization. For example, with a NAAN that is assigned to a

university and managed by its main library, the library should take

care to reserve shoulders (semantically opaque shoulders being

preferred) for distinct assignment streams. Prefix-based partition

management is typically an important responsibility of the NAA.

This shoulder delegation approach plays out differently in two real-

world examples: DNS names and ISBN identifiers. In the former, the

hierarchy is deliberately exposed and in the latter it is hidden.

Rather than using lexical boundary markers such as the period ('.')

found in domain names, the ISBN uses a publisher prefix but doesn't

disclose where the prefix ends and the publisher's assigned name

begins. This practice of non-disclosure, found in the ISBN and ISSN

schemes, is encouraged in assigning ARKs because it reduces the

visibility of an assertion that is probably not important now and

may become a vulnerability later.

If longevity is the goal, it is important to keep the prefixes free

of recognizable semantics; for example, using an acronym

representing a project or a department is discouraged. At the same

time, you may wish to set aside a subnamespace for testing purposes

under a shoulder such as "fk9..." that can serve as a visual clue

and reminder to maintenance staff that this "fake" identifier was

never published.

There are other measures one can take to avoid user confusion,

transcription errors, and the appearance of accidental semantics

when creating identifiers. If you are generating identifiers

automatically, pure numeric identifiers are likeley to be

semantically opaque enough, but it's probably useful to avoid

leading zeroes because some users mistakenly treat them as optional,

thinking (arithmetically) that they don't contribute to the "value"

of the identifier.

If you need lots of identifiers and you don't want them to get too

long, you can mix digits with consonants (but avoid vowels since

they might accidentally spell words) to get more identifiers without

¶

¶

¶

¶

¶

increasing the string length. In this case you may not want more

than a two letters in a row because it reduces the chance of

generating acronyms. Generator tools such as [NOID] provide support

for these sorts of identifiers, and can also add a computed check

character as a guarantee against the most common transcription

errors. If used, it is recommended that the check character be

appended to the original Base Compact Name string (ie, minus the

check character), that original string having been the basis for

computing the check character.

4.7. Sub-Object Naming

As mentioned previously, semantically opaque identifiers are very

useful for long-term naming of abstract objects, however, it may be

appropriate to extend these names with less opaque extensions that

reference contemporary service entry points (sub-objects) in support

of the object. Sub-object extensions beginning with a digit or

underscore ('_') are reserved for the possibilty of developing a

future registry of canonical service points (e.g., numeric

references to versions, formats, languages, etc).

5. Generic ARK Service Definition

An ARK request's output is delivered information; examples include

the object itself, a policy declaration (e.g., a promise of

support), a descriptive metadata record, or an error message. The

experience of object delivery is expected to be an evolving mix of

information that reflects changing service expectations and

technology requirements; contemporary examples include such things

as an object summary and component links formatted for human

consumption. ARK services must be couched in high-level, protocol-

independent terms if persistence is to outlive today's networking

infrastructural assumptions. The high-level ARK service definitions

listed below are followed in the next section by a concrete method

(one of many possible methods) for delivering these services with

today's technology. Note that some services may be invoked in one

operation, such as when an "?info" inflection returns both a

description and a permanence declaration for an object.

5.1. Generic ARK Access Service (access, location)

Returns (a copy of) the object or a redirect to the same, although a

sensible object proxy may be substituted. Examples of sensible

substitutes include,

a table of contents instead of a large complex document,

a home page instead of an entire web site hierarchy,

a rights clearance challenge before accessing protected data,

¶

¶

¶

¶

* ¶

* ¶

* ¶

directions for access to an offline object (e.g., a book),

a description of an intangible object (a disease, an event), or

an applet acting as "player" for a large multimedia object.

May also return a discriminated list of alternate object locators.

If access is denied, returns an explanation of the object's current

(perhaps permanent) inaccessibility.

5.1.1. Generic Policy Service (permanence, naming, etc.)

Returns declarations of policy and support commitments for given

ARKs. Declarations are returned in either a structured metadata

format or a human readable text format; sometimes one format may

serve both purposes. Policy subareas may be addressed in separate

requests, but the following areas should be covered: object

permanence, object naming, object fragment addressing, and

operational service support.

The permanence declaration for an object is a rating defined with

respect to an identified permanence provider (guarantor), which will

be the NMA. It may include the following aspects.

"object availability" -- whether and how access to the object

is supported (e.g., online 24x7, or offline only),

"identifier validity" -- under what conditions the identifier

will be or has been re-assigned,

"content invariance" -- under what conditions the content of

the object is subject to change, and

"change history" -- access to corrections, migrations, and

revisions, whether through links to the changed objects

themselves or through a document summarizing the change history

One approach to persistence statements, conceived independently from

ARKs, can be found at [PStatements], with ongoing work available at

[ARKspecs]. An older approach to a permanence rating framework is

given in [NLMPerm], which identified the following "permanence

levels":

Not Guaranteed: No commitment has been made to retain this

resource. It could become unavailable at any time. Its identifier

could be changed.

Permanent: Dynamic Content: A commitment has been made to keep

this resource permanently available. Its identifier will always

* ¶

* ¶

* ¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

provide access to the resource. Its content could be revised or

replaced.

Permanent: Stable Content: A commitment has been made to keep

this resource permanently available. Its identifier will always

provide access to the resource. Its content is subject only to

minor corrections or additions.

Permanent: Unchanging Content: A commitment has been made to keep

this resource permanently available. Its identifier will always

provide access to the resource. Its content will not change.

Naming policy for an object includes an historical description of

the NAA's (and its successor NAA's) policies regarding

differentiation of objects. Since it is the NMA that responds to

requests for policy statements, it is useful for the NMA to be able

to produce or summarize these historical NAA documents. Naming

policy may include the following aspects.

"similarity" -- (or "unity") the limit, defined by the NAA, to

the level of dissimilarity beyond which two similar objects

warrant separate identifiers but before which they share one

single identifier, and

"granularity" -- the limit, defined by the NAA, to the level of

object subdivision beyond which sub-objects do not warrant

separately assigned identifiers but before which sub-objects

are assigned separate identifiers.

Subnaming policy for an object describes the qualifiers that the

NMA, in fulfilling its ongoing and evolving service obligations,

allows as extensions to an NAA-assigned ARK. To the conceptual

object that the NAA named with an ARK, the NMA may add component

access points and derivatives (e.g., format migrations in aid of

preservation) in order to provide both basic and value-added

services.

Addressing policy for an object includes a description of how,

during access, object components (e.g., paragraphs, sections) or

views (e.g., image conversions) may or may not be "addressed", in

other words, how the NMA permits arguments or parameters to modify

the object delivered as the result of an ARK request. If supported,

these sorts of operations would provide things like byte-ranged

fragment delivery and open-ended format conversions, or any set of

possible transformations that would be too numerous to list or to

identify with separately assigned ARKs.

Operational service support policy includes a description of general

operational aspects of the NMA service, such as after-hours staffing

and trouble reporting procedures.

¶

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

5.1.2. Generic Description Service

Returns a description of the object. Descriptions are returned in a

structured metadata format, a human-readable text format, or in one

format that serves both purposes (such as human-readable HTML with

embedded machine-readable metadata, or perhaps YAML). A description

must at a minimum answer the who, what, when, and where questions

("where" being the long-term identifier as opposed to a transient

redirect target) concerning an expression of the object. Standalone

descriptions should be accompanied by the modification date and

source of the description itself. May also return discriminated

lists of ARKs that are related to the given ARK.

5.2. Overview of The HTTP URL Mapping Protocol (THUMP)

The HTTP URL Mapping Protocol (THUMP) is a way of taking a key (any

identifier) and asking such questions as, what information does this

identify and how permanent is it? [THUMP] is in fact one specific

method under development for delivering ARK services. The protocol

runs over HTTP to exploit the web browser's current pre-eminence as

user interface to the Internet. THUMP is designed so that a person

can enter ARK requests directly into the location field of current

browser interfaces. Because it runs over HTTP, THUMP can be

simulated and tested via keyboard-based interactions [RFC0854].

The asker (a person or client program) starts with an identifier,

such as an ARK or a URL. The identifier reveals to the asker (or

allows the asker to infer) the Internet host name and port number of

a server system that responds to questions. Here, this is just the

NMA that is obtained by inspection and possibly lookup based on the

ARK's NAAN. The asker then sets up an HTTP session with the server

system, sends a question via a THUMP request (contained within an

HTTP request), receives an answer via a THUMP response (contained

within an HTTP response), and closes the session. That concludes the

connected portion of the protocol.

A THUMP request is a string of characters beginning with a '?'

(question mark) that is appended to the identifier string. The

resulting string is sent as an argument to HTTP's GET command.

Request strings too long for GET may be sent using HTTP's POST

command. The two most common requests correspond to two degenerate

special cases. First, a simple key with no request at all is the

same as an ordinary access request. Thus a plain ARK entered into a

browser's location field behaves much like a plain URL, and returns

access to the primary identified object, for instance, an HTML

document.

The second special case is a minimal ARK description request string

consisting of just "?info". For example, entering the string,

¶

¶

¶

¶

¶

into the browser's location field directly precipitates a request

for a metadata record describing the object identified by ark:67531/

metadc107835. The browser, unaware of THUMP, prepares and sends an

HTTP GET request in the same manner as for a URL. THUMP is designed

so that the response (indicated by the returned HTTP content type)

is normally displayed, whether the output is structured for machine

processing (text/plain) or formatted for human consumption (text/

html). In addition to "?info", this specification reserves both '?'

and '??' (originally older forms) for future use.

The following example THUMP session assumes metadata being returned

by a resolver (as server) to a browser client. Each line has been

annotated to include a line number and whether it was the client or

server that sent it. Without going into much depth, the session has

four pieces separated from each other by blank lines: the client's

piece (lines 1-3), the server's HTTP/THUMP response headers (4-8),

and the body of the server's response (9-18). The first and last

lines (1 and 19) correspond to the client's steps to start the TCP

session and the server's steps to end it, respectively.

The first two server response lines (4-5) above are typical of HTTP.

The next line (6) is peculiar to THUMP, and indicates the THUMP

version and a normal return status. The final header line (7)

asserts, for the benefit of recipients unfamiliar with ARK

inflections, that the response describes the uninflected ARK.

 n2t.net/ark:67531/metadc107835?info¶

¶

¶

 1 C: [opens session]

 C: GET https://n2t.net/ark:67531/metadc107835?info HTTP/1.1

 C:

 S: HTTP/1.1 200 OK

 5 S: Content-Type: text/plain

 S: THUMP-Status: 0.6 200 OK

 S: Link: </ark:67531/metadc107835> rel="describes";

 S:

 S: erc:

10 S: who: Austin, Larry

 S: what: A Study of Rhythm in Bach's Orgelbüchlein

 S: when: 1952

 S: where: https://digital.library.unt.edu/ark:/67531/metadc107835

 S: erc-support:

15 S: who: University of North Texas Libraries

 S: what: Permanent: Stable Content:

 S: when: 20081203

 S: where: https://digital.library.unt.edu/ark:/67531/

 S: [closes session]

¶

¶

The balance of the response consists of a single metadata record

(9-18) that comprises the ARK description service response. The

returned record is in the format of an Electronic Resource Citation

[ERC], which is discussed in overview in the next section. For now,

note that it contains four elements that answer the top priority

questions regarding an expression of the object: who played a major

role in expressing it, what the expression was called, when it was

created, and where the expression may be found (note that "where" is

preferably a persistent, citable identifier rather than an unstable

URL sometimes mistakenly referred to as a "location"). This quartet

of elements comes up again and again in ERCs. Lines 13-17 contain a

minimal persistence statement.

Each segment in an ERC tells a different story relating to the

object, so although the same four questions (elements) appear in

each, the answers depend on the segment's story type. While the

first segment tells the story of an expression of the object, the

second segment tells the story of the support commitment made to it:

who made the commitment, what the nature of the commitment was, when

it was made, and where a fuller explanation of the commitment may be

found.

5.3. The Electronic Resource Citation (ERC)

An Electronic Resource Citation (or ERC, pronounced e-r-c) [ERC] is

a kind of object description that uses Dublin Core Kernel metadata

elements [DCKernel]. The ERC with Kernel elements provides a simple,

compact, and printable record for holding data associated with an

information resource. As originally designed [Kernel], Kernel

metadata balances the needs for expressive power, very simple

machine processing, and direct human manipulation. The ERC sense of

"citation" is not limited to the traditional referencing of a result

or information fixed in time on a printed page, but to a more

general kind of reference, both backward, to digital material that

cannot be known to be fixed in time (true of virtually all online

information), and forward, to material that is all the more valuable

for improving or evolving over time.

The previous section shows two limited examples of what is fully

described elsewhere [ERC]. The rest of this short section provides

some of the background and rationale for this record format.

A founding principle of Kernel metadata is that direct human contact

with metadata will be a necessary and sufficient condition for the

near term rapid development of metadata standards, systems, and

services. Thus the machine-processable Kernel elements must only

minimally strain people's ability to read, understand, change, and

transmit ERCs without their relying on intermediation with

¶

¶

¶

¶

specialized software tools. The basic ERC needs to be succinct,

transparent, and trivially parseable by software.

Borrowing from the data structuring format that underlies the

successful spread of email and web services, the ERC format uses

[ANVL], which is based on email and HTTP headers [RFC2822]. There is

a naturalness to ANVL's label-colon-value format (seen in the

previous section) that barely needs explanation to a person

beginning to enter ERC metadata.

While ANVL elements are expected at the top level and don't

themselves support hierarchy, the value of an ANVL element may be an

arbitrary encoded hierarchy of JSON or XML. Typically, the name of

such an ANVL element ends in "json" or "xml", for example, "json" or

"geojson". Care should be taken to escape structural characters that

appear in element names and values, specifically, line terminators

(both newlines ("\n") and carriage returns ("\r")) and, in element

names, colons (":").

Besides simplicity of ERC system implementation and data entry

mechanics, ERC semantics (what the record and its constituent parts

mean) must also be easy to explain. ERC semantics are based on a

reformulation and extension of the Dublin Core [RFC5013] hypothesis,

which suggests that the fifteen Dublin Core metadata elements have a

key role to play in cross-domain resource description. The ERC

design recognizes that the Dublin Core's primary contribution is the

international, interdisciplinary consensus that identified fifteen

semantic buckets (element categories), regardless of how they are

labeled. The ERC then adds a definition for a record and some

minimal compliance rules. In pursuing the limits of simplicity, the

ERC design combines and relabels some Dublin Core buckets to isolate

a tiny kernel (subset) of four elements for basic cross-domain

resource description.

For the cross-domain kernel, the ERC uses the four basic elements --

who, what, when, and where -- to pretend that every object in the

universe can have a uniform minimal description. Each has a name or

other identifier, a locator (a means to access it), some responsible

person or party, and a date. It doesn't matter what type of object

it is, or whether one plans to read it, interact with it, smoke it,

wear it, or navigate it. Of course, this approach is flawed because

uniformity of description for some object types requires more

semantic contortion and sacrifice than for others. That is why at

the beginning of this document, the ARK was said to be suited to

objects that accommodate reasonably regular electronic description.

While insisting on uniformity at the most basic level provides

powerful cross-domain leverage, the semantic sacrifice is great for

many applications. So the ERC also permits a semantically rich and

¶

¶

¶

¶

¶

nuanced description to co-exist in a record along with a basic

description. In that way both sophisticated and naive recipients of

the record can extract the level of meaning from it that best suits

their needs and abilities. Key to unlocking the richer description

is a controlled vocabulary of ERC record types (not explained in

this document) that permit knowledgeable recipients to apply defined

sets of additional assumptions to the record.

5.4. Advice to Web Clients

ARKs are envisaged to appear wherever durable object references are

planned. Library cataloging records, literature citations, and

bibliographies are important examples. In many of these places URLs

(Uniform Resource Locators) are currently used, and inside some of

those URLs are embedded URNs, Handles, and DOIs. Unfortunately,

there's no suggestion of a way to probe for extra services that

would build confidence in those identifiers; in other words, there's

no way to tell whether any of those identifiers is any better

managed than the average URL.

ARKs are also envisaged to appear in hypertext links (where they are

not normally shown to users) and in rendered text (displayed or

printed). A normal HTML link for which the URL is not displayed

looks like this.

A URL with an embedded ARK invites access (via "?info") to extra

services:

Using the [N2T] resolver to provide identifier-scheme-agnostic

protection against hostname instability, this ARK could be published

as:

An NAA will typically make known the associations it creates by

publishing them in catalogs, actively advertizing them, or simply

leaving them on web sites for visitors (e.g., users, indexing

spiders) to stumble across in browsing.

5.5. Enhancements and Related Specifications

ARK services, data models, inflections, and applications continue to

evolve. Follow-on developments and specifications will be made

available from the ARK Maintenance Agency [ARKspecs].

¶

¶

¶

 Click Here <a>¶

¶

 Click Here <a>¶

¶

 Click Here <a>¶

¶

¶

[ANVL]

[ARK]

[ARKagency]

[ARKAtech]

[ARKdrafts]

[ARKspecs]

[CURIE]

[DCKernel]

5.6. Security Considerations

The ARK naming scheme poses no direct risk to computers and

networks. Implementors of ARK services need to be aware of security

issues when querying networks and filesystems for Name Mapping

Authority services, and the concomitant risks from spoofing and

obtaining incorrect information. These risks are no greater for ARK

mapping authority discovery than for other kinds of service

discovery. For example, recipients of ARKs with a specified NMA

should treat it like a URL and be aware that the identified ARK

service may no longer be operational.

Apart from mapping authority discovery, ARK clients and servers

subject themselves to all the risks that accompany normal operation

of the protocols underlying mapping services (e.g., HTTP). As

specializations of such protocols, an ARK service may limit exposure

to the usual risks. Indeed, ARK services may enhance a kind of

security by helping users identify long-term reliable references to

information objects.

6. Informative References

Kunze, J., Kahle, B., Masanes, J., and G. Mohr, "A Name-

Value Language", 2005, <https://n2t.net/ark:/13030/

c7x921j3h>.

Kunze, J., "Towards Electronic Persistence Using ARK

Identifiers", IWAW/ECDL Annual Workshop Proceedings , 3

August 2003, <https://n2t.net/ark:/13030/c7n00zt1z>.

ARK Alliance, "ARK Maintenance Agency", 2021, <https://

arks.org>.

ARK Alliance, "ARK Alliance Technical Working Group",

2022, <https://wiki.lyrasis.org/display/ARKs/

Technical+Working+Group>.

ARK Alliance, "ARK Drafts Repository", 2022, <https://

github.com/arks-org/arkspec>.

ARK Alliance, "ARK Maintenance Agency Specifications",

2021, <https://arks.org/specs/>.

W3C, "CURIE Syntax 1.0", December 2010, <https://

www.w3.org/TR/2010/NOTE-curie-20101216/>.

Dublin Core Metadata Initiative, "Kernel Metadata Working

Group", 20012008, <https://dublincore.org/groups/kernel/

>.

¶

¶

https://n2t.net/ark:/13030/c7x921j3h
https://n2t.net/ark:/13030/c7x921j3h
https://n2t.net/ark:/13030/c7n00zt1z
https://arks.org
https://arks.org
https://wiki.lyrasis.org/display/ARKs/Technical+Working+Group
https://wiki.lyrasis.org/display/ARKs/Technical+Working+Group
https://github.com/arks-org/arkspec
https://github.com/arks-org/arkspec
https://arks.org/specs/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://dublincore.org/groups/kernel/

[DOI]

[ERC]

[Handle]

[Kernel]

[N2T]

[NAANregistry]

[NAANrequest]

[NLMPerm]

[NOID]

[PStatements]

[PURL]

[RFC0854]

[RFC1034]

[RFC2141]

I. D. Foundation, "The Digital Object Identifier (DOI)

System", February 2001, <https://doi.org/10.1000/203>.

Kunze, J. and A. Turner, "Kernel Metadata and Electronic

Resource Citations", October 2007, <https://n2t.net/ark:/

13030/c7sn0141m>.

Lannom, L., "Handle System Overview", ICSTI Forum No. 30

, April 1999, <https://eric.ed.gov/?id=ED450775>.

Kunze, J., "A Metadata Kernel for Electronic Permanence",

Journal of Digital Information Vol 2, Issue 2, ISSN

1368-7506 , January 2002, <https://n2t.net/ark:/13030/

c7rr1pm49>.

ARK Alliance, "Name-to-Thing Resolver", August 2006,

<https://n2t.net>.

ARKs.org, "NAAN Registry", 2019, <https://n2t.net/e/

pub/naan_registry.txt>.

ARKs.org, "NAAN Request Form", 2018, <https://n2t.net/

e/naan_request>.

Byrnes, M., "Permanence Levels and the Archives for NLM's

Permanent Web Documents", March 2005, <https://

www.nlm.nih.gov/pubs/techbull/ma05/ma05_archive.html>.

Kunze, J., "Nice Opaque Identifiers", April 2006,

<https://metacpan.org/dist/Noid/view/noid>.

Kunze, J., "Persistence statements: describing digital

stickiness", October 2016, <https://n2t.net/ark:/13030/

c7833mx7t>.

Shafer, K., "Introduction to Persistent Uniform Resource

Locators", 1996, <https://www.internetsociety.org/inet96/

proceedings/a4/a4_1.htm>.

Postel, J. and J. Reynolds, "Telnet Protocol

Specification", STD 8, RFC 854, DOI 10.17487/RFC0854, May

1983, <https://www.rfc-editor.org/rfc/rfc854>.

Mockapetris, P., "Domain names - concepts and

facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034,

November 1987, <https://www.rfc-editor.org/rfc/rfc1034>.

Moats, R., "URN Syntax", RFC 2141, DOI 10.17487/RFC2141,

May 1997, <https://www.rfc-editor.org/rfc/rfc2141>.

https://doi.org/10.1000/203
https://n2t.net/ark:/13030/c7sn0141m
https://n2t.net/ark:/13030/c7sn0141m
https://eric.ed.gov/?id=ED450775
https://n2t.net/ark:/13030/c7rr1pm49
https://n2t.net/ark:/13030/c7rr1pm49
https://n2t.net
https://n2t.net/e/pub/naan_registry.txt
https://n2t.net/e/pub/naan_registry.txt
https://n2t.net/e/naan_request
https://n2t.net/e/naan_request
https://www.nlm.nih.gov/pubs/techbull/ma05/ma05_archive.html
https://www.nlm.nih.gov/pubs/techbull/ma05/ma05_archive.html
https://metacpan.org/dist/Noid/view/noid
https://n2t.net/ark:/13030/c7833mx7t
https://n2t.net/ark:/13030/c7833mx7t
https://www.internetsociety.org/inet96/proceedings/a4/a4_1.htm
https://www.internetsociety.org/inet96/proceedings/a4/a4_1.htm
https://www.rfc-editor.org/rfc/rfc854
https://www.rfc-editor.org/rfc/rfc1034
https://www.rfc-editor.org/rfc/rfc2141

[RFC2288]

[RFC2611]

[RFC2616]

[RFC2822]

[RFC2915]

[RFC3986]

[RFC5013]

[shoulderrequest]

[SPT]

[THUMP]

Lynch, C., Preston, C., and R. Daniel, "Using Existing

Bibliographic Identifiers as Uniform Resource Names", RFC

2288, DOI 10.17487/RFC2288, February 1998, <https://

www.rfc-editor.org/rfc/rfc2288>.

Daigle, L., van Gulik, D., Iannella, R., and P.

Faltstrom, "URN Namespace Definition Mechanisms", BCP 33,

RFC 2611, DOI 10.17487/RFC2611, June 1999, <https://

www.rfc-editor.org/rfc/rfc2611>.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/

RFC2616, June 1999, <https://www.rfc-editor.org/rfc/

rfc2616>.

Resnick, P., Ed., "Internet Message Format", RFC 2822,

DOI 10.17487/RFC2822, April 2001, <https://www.rfc-

editor.org/rfc/rfc2822>.

Mealling, M. and R. Daniel, "The Naming Authority Pointer

(NAPTR) DNS Resource Record", RFC 2915, DOI 10.17487/

RFC2915, September 2000, <https://www.rfc-editor.org/rfc/

rfc2915>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Kunze, J. and T. Baker, "The Dublin Core Metadata Element

Set", RFC 5013, DOI 10.17487/RFC5013, August 2007,

<https://www.rfc-editor.org/rfc/rfc5013>.

ARKs.org, "Shoulder Request Form", 2021, <https://

n2t.net/e/shoulder_request>.

Kunze, J., "What is Suffix Passthrough?", May 2021,

<http://n2t.net/e/suffix_passthrough.html>.

Gamiel, K. and J. Kunze, "The HTTP URL Mapping Protocol",

August 2007, <https://www.ietf.org/archive/id/draft-

kunze-thump-03.txt>.

https://www.rfc-editor.org/rfc/rfc2288
https://www.rfc-editor.org/rfc/rfc2288
https://www.rfc-editor.org/rfc/rfc2611
https://www.rfc-editor.org/rfc/rfc2611
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2822
https://www.rfc-editor.org/rfc/rfc2822
https://www.rfc-editor.org/rfc/rfc2915
https://www.rfc-editor.org/rfc/rfc2915
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc5013
https://n2t.net/e/shoulder_request
https://n2t.net/e/shoulder_request
http://n2t.net/e/suffix_passthrough.html
https://www.ietf.org/archive/id/draft-kunze-thump-03.txt
https://www.ietf.org/archive/id/draft-kunze-thump-03.txt

Appendix A. ARK Maintenance Agency: arks.org

The ARK Maintenance Agency [ARKagency] at arks.org has several

functions.

To manage the registry of organizations that will be assigning

ARKs. Organizations can request or update a NAAN by filling out

the NAAN Request Form [NAANrequest].

To be a clearinghouse for information about ARKs, such as best

practices, introductory documentation, tutorials, community

forums, etc. These supplemental resources help ARK implementors

in high-level applications across different sectors and

disciplines, and with a variety of metadata standards.

To be a locus of discussion about future versions of the ARK

specification.

Appendix B. Looking up NMAs Distributed via DNS

This subsection introduces an older method for looking up NMAs that

is based on the method for discovering URN resolvers described in

[RFC2915]. It relies on querying the DNS system for Name Authority

Pointer (NAPTR) records that mirror the contents of the plain text

[NAANregistry] database. A query is submitted to DNS asking for a

list of resolvers that match a given NAAN. DNS distributes the query

to the particular DNS servers that can best provide the answer,

unless the answer can be found more quickly in a local DNS cache as

a side-effect of a recent query. Responses come back inside NAPTR

records. The normal result is one or more candidate NMAs.

In its full generality the [RFC2915] algorithm ambitiously

accommodates a complex set of preferences, orderings, protocols,

mapping services, regular expression rewriting rules, and DNS record

types. This subsection proposes a drastic simplification of it for

the special case of ARK mapping authority discovery. The simplified

algorithm is called Maptr. It uses only one DNS record type (NAPTR)

and restricts most of its field values to constants. The following

hypothetical excerpt from a DNS data file for the NAAN known as

12026 shows three example NAPTR records ready to use with the Maptr

algorithm.

¶

*

¶

*

¶

*

¶

¶

¶

12026.ark.arpa.

;; US Library of Congress

;; order pref flags service regexp replacement

 IN NAPTR 0 0 "h" "ark" "USLC" lhc.nlm.nih.gov:8080

 IN NAPTR 0 0 "h" "ark" "USLC" foobar.zaf.org

 IN NAPTR 0 0 "h" "ark" "USLC" sneezy.dopey.com

¶

All the fields are held constant for Maptr except for the "flags",

"regexp", and "replacement" fields. The "service" field contains the

constant value "ark" so that NAPTR records participating in the

Maptr algorithm will not be confused with other NAPTR records. The

"order" and "pref" fields are held to 0 (zero) and otherwise ignored

for now; the algorithm may evolve to use these fields for ranking

decisions when usage patterns and local administrative needs are

better understood.

When a Maptr query returns a record with a flags field of "h" (for

host, a Maptr extension to the NAPTR flags), the replacement field

contains the NMA (host) of an ARK service provider. When a query

returns a record with a flags field of "" (the empty string), the

client needs to submit a new query containing the domain name found

in the replacement field. This second sort of record exploits the

distributed nature of DNS by redirecting the query to another domain

name. It looks like this.

Here is the Maptr algorithm for ARK mapping authority discovery. In

it replace <NAAN> with the NAAN from the ARK for which an NMA is

sought.

Initialize the DNS query: type=NAPTR, query=<NAAN>.ark.arpa.

Submit the query to DNS and retrieve (NAPTR) records,

discarding any record that does not have "ark" for the service

field.

All remaining records with a flags fields of "h" contain

candidate NMAs in their replacement fields. Set them aside, if

any.

Any record with an empty flags field ("") has a replacement

field containing a new domain name to which a subsequent query

should be redirected. For each such record, set

query=<replacement> then go to step (2). When all such records

have been recursively exhausted, go to step (5).

All redirected queries have been resolved and a set of

candidate NMAs has been accumulated from steps (3). If there

are zero NMAs, exit -- no mapping authority was found. If there

is one or more NMA, choose one using any criteria you wish,

then exit.

A Perl script that implements this algorithm is included here.

¶

¶

12345.ark.arpa.

;; Digital Library Consortium

;; order pref flags service regexp replacement

 IN NAPTR 0 0 "" "ark" "" dlc.spct.org.

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

Authors' Addresses

John A. Kunze

Ronin Institute

United States of America

Email: jakkbl@gmail.com

Emmanuelle Bermès

École nationale des Chartes

65 Rue de Richelieu

75002 Paris

France

Email: emmanuelle.bermes@chartes.psl.eu

#!/usr/bin/env perl

use Net::DNS; # include simple DNS package

my $qtype = "NAPTR"; # initialize query type

my $naa = shift; # get NAAN script argument

my $mad = new Net::DNS::Resolver; # mapping authority discovery

&maptr("$naa.ark.arpa"); # call maptr - that's it

sub maptr { # recursive maptr algorithm

 my $dname = shift; # domain name as argument

 my ($rr, $order, $pref, $flags, $service, $regexp,

 $replacement);

 my $query = $mad->query($dname, $qtype);

 return # non-productive query

 if (! $query || ! $query->answer);

 foreach $rr ($query->answer) {

 next # skip records of wrong type

 if ($rr->type ne $qtype);

 ($order, $pref, $flags, $service, $regexp,

 $replacement) = split(/\s/, $rr->rdatastr);

 if ($flags eq "") {

 &maptr($replacement); # recurse

 } elsif ($flags eq "h") {

 print "$replacement\n"; # candidate NMA

 }

 }

}

¶

mailto:jakkbl@gmail.com
mailto:emmanuelle.bermes@chartes.psl.eu

	The ARK Identifier Scheme
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Reasons to Use ARKs
	1.2. Three Requirements of ARKs
	1.3. Organizing Support for ARKs: Our Stuff vs. Their Stuff
	1.4. Definition of Identifier

	2. ARK Anatomy
	2.1. The Name Mapping Authority (NMA)
	2.2. The ARK Label Part (ark:)
	2.3. The Name Assigning Authority Number (NAAN)
	2.4. The Name Part
	2.4.1. Optional: Shoulders

	2.5. The Qualifier Part
	2.5.1. ARKs that Reveal Object Hierarchy
	2.5.2. ARKs that Reveal Object Variants

	3. ARK Processing
	3.1. Character Repertoires
	3.2. Normalization and Lexical Equivalence
	3.3. Resolver Chains and Roles
	3.4. Finding a Resolver Service

	4. Naming Considerations
	4.1. ARKS and Usability
	4.2. Objects Should Wear Their Identifiers
	4.3. Names are Political, not Technological
	4.4. Choosing a Hostname or NMA
	4.5. Assigners of ARKs
	4.6. NAAN Namespace Management
	4.7. Sub-Object Naming

	5. Generic ARK Service Definition
	5.1. Generic ARK Access Service (access, location)
	5.1.1. Generic Policy Service (permanence, naming, etc.)
	5.1.2. Generic Description Service

	5.2. Overview of The HTTP URL Mapping Protocol (THUMP)
	5.3. The Electronic Resource Citation (ERC)
	5.4. Advice to Web Clients
	5.5. Enhancements and Related Specifications
	5.6. Security Considerations

	6. Informative References
	Appendix A. ARK Maintenance Agency: arks.org
	Appendix B. Looking up NMAs Distributed via DNS
	Authors' Addresses

